

Contribution of Japanese Cement Industry towards Addressing Environmental Issues

Rokuro TOMITA

Executive Officer General manager, R&D Center

Taiheiyo Cement Corporation

Contents of Today's Presentation

- 1. Current data on the Japanese cement industry
- 2. Status of recycling in Japan
- 3. Recycling technologies of Taiheiyo cement corp.
- 4. Turning municipal incinerator ash into a resource
- 5. Chlorine by-pass technology
- 6. Conclusions

Cement production of Japan

Kiln Type

copyright TCC

2006.11.17 KCI Symposium

Heat consumption (Coal equivalent)

Electric power consumption

copyright TCC

Types and Sales of Cement

	Cunit : million tons/										
Year		80		90		2000		2004		2005	
Cement T	уре		%		%		%		%		%
	Ordinary	71.7	89.3	62.2	76.3	49.4	69.5	39.4	68.8	39.6	68.1
Portland	High early strength	1.5	1.9	3.5	4.3	3.2	4.6	2.5	4.4	2.6	4.6
Cement	Others (A)	0.3	0.4	0.3	0.3	0.4	0.5	0.6	1.1	1.0	1.7
	Sub-total	73.5	91.6	66.0	80.9	53.0	74.6	42.5	74.3	43.2	74.4
	Blast-furnace slag	5.0	6.2	14.9	18.3	17.3	24.4	14.3	25.1	14.4	24.8
Blended Cement	Fly–ash	1.6	2.0	0.5	0.7	0.7	1.0	0.4	0.6	0.5	0.8
	Others (B)	0.2	0.2	0.2	0.1	0.1	0.0	0.0	0.0	0.0	0.0
	Sub-total	6.8	8.4	15.6	19.1	18.1	25.4	14.7	25.7	14.9	25.6
	Total	80.3	1 00.0	81.6	100.0	71.1	100.0	57.2	100.0	58.1	100.0

Note: (1)Other Portland Cement (A) includes Moderate Heat Cement, Sulphate Resisting Cement and Composit Cement. (2) Other Blended Cement (B) includes Pozzolan Cement and Composit Cement.

copyright TCC

2006.11.17 KCI Symposium

Contents of Today's Presentation

- 1. Current data on the Japanese cement industry
- 2. Status of recycling in Japan
- 3. Recycling technologies of Taiheiyo cement corp.
- 4. Turning municipal incinerator ash into a resource
- 5. Chlorine by-pass technology
- 6. Conclusions

Waste Material Used in Cement Industry

ltom	fiscal year					
	2001	2002	2003	2004	2005	
Blast furnace slag	11, 915	10, 474	10, 173	9, 231	9, 214	
Coal ash	5, 822	6, 320	6, 429	6, 937	7, 185	
Gypsum by-product	2, 568	2, 556	2, 530	2, 572	2, 707	
Dirt, Sludge	2, 235	2, 286	2, 413	2, 649	2, 526	
Soil from construction	_	269	629	1, 692	2, 097	
Non-ferrous slag	1, 236	1, 039	1, 143	1, 305	1, 318	
Unburned ash, soot, dust	943	874	953	1, 110	1, 189	
Molding sand	492	507	565	607	601	
Steel manufacture slag	935	803	577	465	467	
Wood chips	20	149	271	305	340	
Waste plastic	171	211	255	283	302	
Coal tailing	574	522	390	297	280	
Recycled oil	204	252	238	236	228	
Waste oil	149	100	173	214	219	
Used tire	284	253	230	221	194	
Used clay	82	97	97	116	173	
Bone-meal feed	2	91	122	90	85	
Others	428	435	378	452	468	
Total	28, 061	27, 238	27, 566	28, 782	29, 593	
Rate of consumption (kg/t-	355	361	375	401	400	

copyright TCC

Recycling in the Japanese Cement Industry

Advantages of Waste Recycling at Cement Plants

- 1. No generation of waste by-products
- 2. Detoxification of waste material
- 3. Reduced natural raw-material consumption
- 4. Reduced production of greenhouse gases
- 5. Contribution to creation of a local recycling society (->Disposal site life extension)

Cement Materials and Chemical Composition

Cement materials and chemical composition

		Portland		Recycled resources				
		Component	cement	Ash	Water purifier sludge	Sewage	Waste tires	
Limestone	}>	CaO	64-65%	23.0%	13.9%	10.1%	0.1%	
Clay (Silica)	SiO ₂	20-21%	27.3%	33.0%	30.7%			
	Al ₂ O ₃	5%	14.3%	16.2%	19.5%	0.05%		
Iron		Fe ₂ O ₃	3%	6.2%	4.8%	5.2%	5-20	
							95-80	

Combustible materials

(Natural materials, for reference)

	CaO	SiO ₂	Al2O3	Fe2O3
Limestone	47-55%	< 4%	< 2%	< 2%
Clay	< 5%	45-78%	10-26%	3-9%
Silica	< 2%	77-96%	2-10%	< 5%
Iron material				40-90%

copyright TCC

Treatment of Pollutants

Cement Industry Recycling of Waste and By-products Extends the Life of Disposal Sites (estimated)

(A)	Remaining volume of i	industrial waste disposal sites	179,410,000m ³
(B)	Volume transported to	disposal site per year	40,000,000m ³
(C)	Remaining disposal sinno. of years (C=A/B)	te volume times	4.5 Years
(D)	Volume of cement rec	ycled per year	19,500,000m ³
(E)	No. of years remaining were not recycled (E=	g for disposal site if cement A/(B+D)	3.0 Years
(F)	Length of extension of from cement plant rec	f life of disposal site resulting ycling (F=C-E)	+ <u>1.5 Years</u>
		Note: Japan Ceme	ent Association estimate
	copyright TCC	2006.11.17 KCI Symposium	13

Contents of Today's Presentation

- 1. Current data on the Japanese cement industry
- 2. Status of recycling in Japan
- 3. Recycling technologies of Taiheiyo cement corp.
- 4. Turning municipal incinerator ash into a resource
- 5. Chlorine by-pass technology
- 6. Conclusions

Changes in Consumption of Waste Materials and Household Waste by Taiheiyo Cement

Background of Development on AK System -The recycle process of urban waste as a raw material of cement

- Hidaka City, Saitama prefecture, operates a MSW incinerator since more than 30 years and was forced to build a new incinerator to replace worn out one until <u>December 2002</u>.
- For a long time (from 1993), Taiheiyo Cement Corporation had been asked by Hidaka city to co-operate to solve the city's MSW issue. Taiheiyo Cement Corporation and Hidaka city had continued the discuss about a new MSW treatment technology.
- In 1999, Taiheiyo Cement Corporation proposed our "AK System" to Hidaka City and Hidaka City decided to apply "AK System" to solve the city's MSW issue in June 2000.
- The idle kiln in our Saitama factory was converted to a Digester (one of the main facility in AK system) and the demonstration test was carried out from March of 2001 to October 2002.

- Operation started at Saitama Plant in February 2002
- 15,000t/y of Hidaka City's trash turned into resources

copyright TCC

Municipal solid waste (MSW) of Hidaka city

Freon Breakdown

2006.11.17 KCI Symposium

copyright TCC

Treatment of Used Pachinko Machines

Treatment of Waste Plastics

1. Outline of treatment facilities

2. Types of waste plastics expected to be treated

Source	Composition	Shape Ve	olume (t/y)	Remarks
Sekisui Chemical Musashino Plant	PE foam Bridge PE Compacted products	Rolled sheets Rolled sheets Block	210t 1,440t 720t	Diamad valuma of
Hitachi Chemical Yamazaki Plant, Mie S	PET, PE, phenol Structural Products	Rolled film	2,640 t	waste plastics treated 6,500t/y
Other	PET, PE	Rolled film, etc	. 1,380 t	Start of operation Dec. 1998
	Total		6,390t	

copyright TCC

2006.11.17 KCI Symposium

Contents of Today's Presentation

- 1. Current data on the Japanese cement industry
- 2. Status of recycling in Japan
- 3. Recycling technologies of Taiheiyo cement corp.
- 4. Turning municipal incinerator ash into a resource
- 5. Chlorine by-pass technology
- 6. Conclusions

Development of Technology for Turning Municipal Trash Incinerator Ash into a Resource

copyright TCC

Bottom ash Treatment Technology

Ash properties	Problems
Moisture 25-30%	Adheres to transporter; clogs chute
Contains calcium component	Solidifies during storage

Fly ash De-chlorination Technology

Technical problems

- High chlorine content (10-20%) -> De-chlorination technology
- Heavy metals in drainage water -> Proper treatment
- Dioxin content
 (fixed within the cement, breakdown)

copyright TCC

Sample Treatment Water Composition After Each Operation

		Concentrate	oncentrate Treatment water composition for a processes			Permissib le sewage	
	Unit	composition	Carbonation	Chemical treatment	Filter	discharge value	
Pollutants	Pollutants						
Cadmium	mg/L	0.69	0.01	0.01	N.D.	0.1	
Lead	mg/L	250	0.4	N.D.	N.D.	0.1	
Total mercury	mg/L	0.001	0.001	N.D.	N.D.	0.005	
Alkyl mercury	mg/L	N.D.	N.D.	N.D.	N.D.	N.D.	
Hexavalent chrome	mg/L	N.D.	N.D.	N.D.	N.D.	0.5	
Environmental items	;						
Copper	mg/L	0.09	0.4	0.04	0.04	3	
Zinc	mg/L	7.1	0.5	0.1	0.05	5	
Chrome	mg/L	0.02	0.012	N.D.	N.D.	2	
Suspended matter	mg/L	450	42	17	4	600	
DXNs	Ng-TEQ/L	1,200	7.9	0.46	0.09	10	

copyright TCC

Results of Breakdown of Dioxins in Exhaust Gas

- Dioxins in fly ash are not dissolved out on the water side; they remain in the washing cake and/or caked precipitate from the drainage water treatment process.
- The cake is charged directly into the kiln where it is broken down and rendered harmless by high-temperature (1,450°C) sintering.

Density of dioxins in exhaust gas

0.0000074 - 0.0025 (ng-TEQ/m³N)

Development of Ash Treatment System

- March 1995 Kumagaya City sounded out on effective use of incinerator ash
- 1996-1997 Saitama Prefecture double-plant planned; ash washing and de-chlorination technology adopted for zero-emission promotion and demonstration business
- April 1998 Experimental plant built (treatment capacity, 8,000t/y); demonstration tests of use of municipal trash incinerator ash in cement production begun (joint research by Saitama Prefecture and Kumagaya City)
- Jan. 2000 "Calcining method" approved as one of the dust treatment regulations set by Minister of Health and Welfare
 - March Establishment of ash washing system technology recognized by Technical Committee
 - Nov. Approval for construction of facilities for treatment of general waste received
- Feb. 2001Agreement reached with Saitama prefectural wide-area waste treatment
measures conference on basic items for consignment of wide-area treatment

July Industrialization plant operation begun; treatment capacity 63,000t/y

Incinerator ash collected from areas around northern Saitama; business for use of waste as a resource for cement begun

What is Ecocement Coinage; Ecology and Cement

TAIHEIYO CEMENT

Comparison of raw materials for Ordinary Portland Cement and Ecocement

Features of Ecocement Process

- Safe destruction of all toxic organic substances such as DXNs in incineration ash, thanks to high temperature in the Ecocement kiln (1350 – 1400C)
- Extraction and enrichment of heavy metal compounds, followed by their recycling at non-ferrous metal industry
- **Reduction of CO₂ emissions** due to less use of limestone
- No generation of secondary solid waste, contributing to prolonging the life of landfill site (or even landfill-free)

Quality of Ecocement (JIS R 5214)

	Туре	Normal	Normal
Quality		Ecocement	Portland cement
Density g/cm ³		_	_
Specific surface	e area cm²/g	2500 min	2500 min
Setting time	Initial h-m	1–00 min	1–00 min
	Final h−m	10–00 min	10–00 min
Soundness	Pat method	Good	Good
	Le chatelier method mm	10 max	10 max
Compressive	1d	-	-
strength	3d	12.5 min	12.5 min
N∕mm²	7d	22.5 min	22.5 min
	28d	42.5 min	42.5 min
Chemical	Magnesium oxide	5.0 max	5.0 max
composition	Sulfur trioxide	4.5 max	3.0 max
(%)	Ignition loss	3.0 max	3.0 max
	Total alkali	0.75 max	0.75 max
	Chloride ion	0.1 max	0.035 max

copyright TCC

Ichihara Ecocement Plant

Note) Foundations of the kiln were made using Ecocement

copyright TCC

Eco-cement Plant in Tama, Metropolitan Tokyo

copyright TCC

Contents of Today's Presentation

- 1. Current data on the Japanese cement industry
- 2. Status of recycling in Japan
- 3. Recycling technologies of Taiheiyo cement corp.
- 4. Turning municipal incinerator ash into a resource
- 5. Chlorine by-pass technology
- 6. Conclusions

Summary of Volatile Component Circulation and Cyclone Clogging Mechanism

Sample Volatile Component Balance

copyright TCC

Chlorine Bypass System Flow Chart

Volume of Municipal Trash Incinerator Ash That Can Be Used in Cement Kilns

Without chlorine bypass	Chlorine bypass type 250	Fly ash washing desalination	Chlorine bypass type 250 + Fly ash washing desalination	
15ppm	216ppm	15ppm	216ppm	
1.4%				
15.	.0%	0.45%		
0.2	2.4	0.9	13.3	
0.1	1.2	0.5	6.6	
0.3	3.6	1.4	19.9	
	Without chlorine bypass 15ppm 15. 0.2 0.1 0.3	Without chlorine bypassChlorine bypass type 25015ppm216ppm15.0%1.20.22.40.11.20.33.6	Without chlorine bypassChlorine bypass type 250Fly ash washing desalination15ppm216ppm15ppm15ppm1.40.22.40.90.11.20.50.33.61.4	

Input chlorine from source fuels other than urban trash incinerator ash is 20ppm (clinker conversion). Ratio of ash to fly ash is 2:1 depending on volume produced; fly ash washing desalination efficiency is 97%.

KCI Recovery Process of KCI Recovered K Powder

Quality Target and Actual Performance of KCI Recovered K Powder

	Target	Actual performance
K ₂ O	57% min	60%
Ca	1000 mg/kg max	100mg/kg max
SO ₄	1000 mg/kg max	100mg/kg max
Heavy metals	10 mg/kg max	0.2mg/kg max

Conclusions

The contents of this report can be summarized as follows.

- In Japan, energy saving technologies in the cement production have been developed, and at the same time as many types of advanced recycling technologies of waste materials.
- 2 The amount of waste materials and by-products utilized in 1 ton of cement produced in the Japanese cement industry has reached an average of 400 kg.
- ③ By treatment technologies, represented by the chloride bypass process, the incineration ash of municipal waste containing chloride compounds has been utilized increasingly in the cement production process.
- (4) Three unique methods of utilizing municipal wastes, fly ash washing system, ecocement system, and AK system were in practical use and the method to be selected varied depending on actual conditions in each region.

We want to contribute to the creation of a recycling society.

Thank you for your attention

copyright TCC

2006.11.17 KCI Symposium

47